WEATHER IN LINCOLN COUNTY

 

lazerrose title=

audiology title=

 

barrelhead

prp

oceancreek

Coast Tree

Sema Roofing

wandr

occc

audiology title=

 

barrelhead
prp

oceancreek

Coast Tree

Sema Roofing

wandr

occc


 

barrelhead


Coast Tree

flocs

Oceanographers chart the decline of coral reefs

Coral inspection
HMSC

Dying/dead coral
HMSC

Researchers identify type of parasitic bacteria that saps corals of energy

 

Story provided by Steve Lundeberg

CORVALLIS, Ore. – Researchers at Oregon State University have proposed a new genus of bacteria that flourishes when coral reefs become polluted, siphoning energy from the corals and making them more susceptible to disease.

The National Science Foundation-funded study, published this week in the ISME Journal, adds fresh insight to the fight to save the Earth’s embattled reefs, the planet’s largest and most significant structures of biological origin.

Coral reefs are found in less than 1% of the ocean but are home to nearly one-quarter of all known marine species. Reefs also help regulate the sea’s carbon dioxide levels and are a crucial hunting ground that scientists use in the search for new medicines.

Since their first appearance 425 million years ago, corals have branched into more than 1,500 species, including the one at the center of this research: the endangered Acropora cervicornis, commonly known as the Caribbean staghorn coral.

In the study, when the corals were subjected to elevated levels of nutrients – i.e., pollution from agricultural runoff and sewage – the newly identified bacterial genus began dominating the corals’ microbiome, jumping from 11.4% of the bacterial community to 87.9%.

This research, which included canvassing DNA sequence data from a multitude of past studies, shows that the bacterial clade is globally associated with many different coral hosts and has genes that enable it to parasitize (feed off) its hosts for amino acids and ATP, the main energy-carrying molecule within cells.

“When we discovered the gene that takes ATP from the host, we knew we were onto something,” Klinges said. “The gene has a similar protein structure to mitochondrial genes but does the reverse – it gives back ADP, which is no longer useful, to the animal.”

When nutrient levels are normal and corals are healthy, the corals can tolerate low populations of Rickettsiales. But when a reef becomes nutrient rich, the Rickettsiales population spikes and becomes harmful as it consumes more and more of its hosts’ resources.

“This order of bacteria is in the microbiome of diseased corals but it’s also in healthy corals at low levels,” Klinges said. “It’s affecting the host’s immune system even if it isn’t pathogenic on its own – there are so many cascading effects. As nutrient pollution increasingly affects reefs, we suspect that parasites within the new genus will proliferate and put corals at greater risk.”

In a metadata analysis of 477,075 samples from the Earth Microbiome Project and Sequence Read Archive databases, researchers found Candidatus Aquarickettsia rohweri to be present around the globe in 51 genera of stony corals and 76 genera of sponges.

“Together these data suggest that our proposed genus broadly associates with corals and also with many members of the non-bilaterian metazoan phyla – Placozoa, Porifera, Cnidaria and Ctenophora – as well as the even more ancient protists,” said study co-author and OSU microbiologist Rebecca Vega Thurber.

“That blew my mind,” Klinges added. “We were just looking at this one species of coral and one species of bacteria, and now we know the genus of bacteria is involved in hundreds and thousands of years of coral evolution. We expect to find different bacterial species in other corals, but they fall in the same genus and therefore have a pretty similar function. In next few years our lab will assemble genomes of related bacteria present in other species of coral.”

 

Scientists from the University of Miami, Duke University, the University of California, Santa Barbara, Penn State, George Mason University, Roger Williams University collaborated on this research, as did the National Oceanic and Atmospheric Administration and two German universities.

 

barrelhead


Coast Tree

flocs

Coast Tree

flocs

Coast Tree

flocs

nlcad

Follow-us-tile